हिंदी

If length of a diagonal of a rhombus is 30 cm and its area is 240 sq cm, find its perimeter. - Marathi (Second Language) [मराठी (द्वितीय भाषा)]

Advertisements
Advertisements

प्रश्न

If length of a diagonal of a rhombus is 30 cm and its area is 240 sq cm, find its perimeter.

योग

उत्तर

Let ABCD be the rhombus.

Diagonals AC and BD intersect at point E.

l(AC) = 30 cm           …(i)

and Area of a rhombus = 240 sq. cm           …(ii)

Area of a rhombus = `1/2` (product of diagnols)

⇒ 240 = `1/2` × (30 × DB)

⇒ DB = `(240 xx 2)/30` = 16           …(iii)

Diagonals of a rhombus bisect each other.

∴ `l(AE) = 1/2 l(AC)`

= `1/2 xx 30`

= 15 cm           …(iv)

∴ `l(DE) = 1/2 l(DB)`

= `1/2 xx 16`

= 8 cm           …(v)

In ΔADE,

∠AED = 90°               …[Diagonals of a rhombus are perpendicular to each other]

AE2 + DE2 = AD2              …[Pythagoras theorem]

⇒ 152 + 82 = AD2              ...[From (iv) and (v)]

⇒ AD2 = 225 + 64 = 289

⇒ AD = `sqrt289`             …[Taking square root of both sides]

= 17 cm

Thus, the side of the rhombus = 17 cm

Perimeter of rhombus = 4 × side

= `4 xx 17`

= 68 cm

∴ The perimeter of the rhombus is 68 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Area - Practice Set 15.2 [पृष्ठ ९७]

APPEARS IN

बालभारती Mathematics [English] 8 Standard Maharashtra State Board
अध्याय 15 Area
Practice Set 15.2 | Q 4 | पृष्ठ ९७
बालभारती Integrated 8 Standard Part 4 [English Medium] Maharashtra State Board
अध्याय 3.2 Area
Practice Set 15.2 | Q 4. | पृष्ठ ५२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×