हिंदी

If O is the Circumcentre of a δ Abc and Od ⊥ Bc, Prove that ∠ Bod = ∠A. - Mathematics

Advertisements
Advertisements

प्रश्न

If O is the circumcentre of a Δ ABC and OD ⊥ BC, prove that ∠ BOD = ∠A. 

योग

उत्तर

Join OB and OC.

In Δ OBD and Δ OCD, we have
OB = OC             ....(Each equal to the radius of circumcircle) 
∠ODB = ∠ODC  ....(Each equal to 90°)
and OD = OD    ....(Common)

∴ Δ OBD ≅ Δ OCD
⇒ ∠BOD = ∠COD
⇒ ∠BOC = 2∠BOD = 2∠COD

Now, arc BC substends ∠BOC at the centre and ∠BAC = ∠A at a point in the remaining part of the circle.

∴ ∠BOC = 2∠A
⇒ 2∠BOD = 2∠A      ....( ∵∠BOC = 2∠BOD)
⇒ ∠BOD = ∠A
Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 15: Circles - Exercise 1

APPEARS IN

आईसीएसई Mathematics [English] Class 10
अध्याय 15 Circles
Exercise 1 | Q 24

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×