Advertisements
Advertisements
प्रश्न
If the lines x + y = 6 and x + 2y = 4 are diameters of the circle, and the circle passes through the point (2, 6) then find its equation.
उत्तर
To get coordinates of centre we should solve the equations of the diameters x + y = 6, x + 2y = 4.
x + y = 6 ……. (1)
x + 2y = 4 ………. (2)
(1) – (2) ⇒ -y = 2
y = -2
Using y = -2 in (1) we get x – 2 = 6
x = 8
Centre is (8, -2) the circle passes through the point (2, 6).
∴ Radius = `sqrt((8 - 2)^2 + (- 2 - 6)^2)`
`= sqrt(6^2 + (- 8)^2)`
`= sqrt(36 + 64)`
`= sqrt100` = 10
Equation of the circle with centre (h, k) and radius r is (x – h)2 + (y – k)2 = r2
⇒ (x – 8)2 + (y + 2)2 = 102
⇒ x2 + y2 – 16x + 4y + 64 + 4 = 100
⇒ x2 + y2 – 16x + 4y – 32 = 0
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle on the line joining the points (1, 0), (0, 1), and having its centre on the line x + y = 1.
Find the equation of the circle having (4, 7) and (-2, 5) as the extremities of a diameter.
Determine whether the points P(1, 0), Q(2, 1) and R(2, 3) lie outside the circle, on the circle or inside the circle x2 + y2 – 4x – 6y + 9 = 0.
If the perimeter of the circle is 8π units and centre is (2, 2) then the equation of the circle is:
Obtain the equation of the circles with radius 5 cm and touching x-axis at the origin in general form
Determine whether the points (– 2, 1), (0, 0) and (– 4, – 3) lie outside, on or inside the circle x2 + y2 – 5x + 2y – 5 = 0
Choose the correct alternative:
The circle x2 + y2 = 4x + 8y + 5 intersects the line 3x – 4y = m at two distinct points if
Choose the correct alternative:
The centre of the circle inscribed in a square formed by the lines `x^2 - 8x - 12` = 0 and `y^2 - 14y + 45` = 0 is
Choose the correct alternative:
The radius of the circle passing through the points (6, 2) two of whose diameter are x + y = 6 and x + 2y = 4 is
Choose the correct alternative:
Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centered at (0, y) passing through the origin and touching the circle C externally, then the radius of T is equal to