Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centered at (0, y) passing through the origin and touching the circle C externally, then the radius of T is equal to
विकल्प
`sqrt(3)/sqrt(2)`
`sqrt(3)/2`
`1/2`
`1/4`
उत्तर
`1/4`
APPEARS IN
संबंधित प्रश्न
Find the equation of the following circles having the centre (3, 5) and radius 5 units.
Find the centre and radius of the circle
x2 + y2 – 22x – 4y + 25 = 0
Find the centre and radius of the circle.
(x + 2) (x – 5) + (y – 2) (y – 1) = 0
Find the equation of the circle whose centre is (2, 3) and which passes through (1, 4).
Find the Cartesian equation of the circle whose parametric equations are x = 3 cos θ, y = 3 sin θ, 0 ≤ θ ≤ 2π.
Determine whether the points P(1, 0), Q(2, 1) and R(2, 3) lie outside the circle, on the circle or inside the circle x2 + y2 – 4x – 6y + 9 = 0.
Find the length of the tangent from (1, 2) to the circle x2 + y2 – 2x + 4y + 9 = 0.
In the equation of the circle x2 + y2 = 16 then v intercept is (are):
The equation of the circle with centre (3, -4) and touches the x-axis is:
If the circle touches the x-axis, y-axis, and the line x = 6 then the length of the diameter of the circle is:
Find the equation of the tangent and normal to the circle x2 + y2 – 6x + 6y – 8 = 0 at (2, 2)
Find centre and radius of the following circles
x2 + y2 – x + 2y – 3 = 0
Choose the correct alternative:
The length of the diameter of the circle which touches the x -axis at the point (1, 0) and passes through the point (2, 3)
Choose the correct alternative:
The radius of the circle 3x2 + by2 + 4bx – 6by + b2 = 0 is
Choose the correct alternative:
The centre of the circle inscribed in a square formed by the lines `x^2 - 8x - 12` = 0 and `y^2 - 14y + 45` = 0 is
Choose the correct alternative:
The equation of the normal to the circle x2 + y2 – 2x – 2y + 1 = 0 which is parallel to the line 2x + 4y = 3 is
Choose the correct alternative:
If the normals of the parabola y2 = 4x drawn at the end points of its latus rectum are tangents to the circle (x – 3)2 + (y + 2)2 = r2, then the value of r2 is
Choose the correct alternative:
The circle passing through (1, – 2) and touching the axis of x at (3, 0) passing through the point
Choose the correct alternative:
If the coordinates at one end of a diameter of the circle x2 + y2 – 8x – 4y + c = 0 are (11, 2) the coordinates of the other end are