Advertisements
Advertisements
प्रश्न
Find the equation of the tangent and normal to the circle x2 + y2 – 6x + 6y – 8 = 0 at (2, 2)
उत्तर
The equation of the tangent to the circle x2 + y2 + 2 gx + 2fy + c = 0 at (x1, y1) is
xx1 + yy1 + g(x + x1) + f(y + y1) + c = 9
So the equation of the tangent to the circle
x2 + y2 – 6x + 6y – 8 = 0 at (x1, y1) is
xx1 + yy1 – `(6(x + x_1))/2 + (6(y + y_1))/2 - 8` = 0
(i.e) xx1 + yy1 – 3(x + x1) + 3(y + y1) – 8 = 0
Here (x1, y1) = (2, 2)
So equation of the tangent is
x(2) + y(2) – 3(x + 2) + 3(y + 2) – 8 = 0
(.i.e) 2x + 2y – 3x – 6 + 3y + 6 – 8 = 0
(i.e) – x + 5y – 8 = 0 or x – 5y + 8=0
Normal is a line ⊥ r to the tangent
So equation of normal circle be of the form 5x + y + k = 0
The normal is drawn at (2, 2)
⇒ 10 + 2 + k = 0
⇒ k = – 12
So equation of normal is 5x + y – 12 = 0
APPEARS IN
संबंधित प्रश्न
Find the equation of the following circles having the centre (0,0) and radius 2 units
Find the centre and radius of the circle
x2 + y2 – 22x – 4y + 25 = 0
Find the equation of the circle whose centre is (-3, -2) and having circumference 16π.
Find the Cartesian equation of the circle whose parametric equations are x = 3 cos θ, y = 3 sin θ, 0 ≤ θ ≤ 2π.
Find the value of P if the line 3x + 4y – P = 0 is a tangent to the circle x2 + y2 = 16.
If (4, 1) is one extremity of a diameter of the circle x2 + y2 - 2x + 6y - 15 = 0 find the other extremity.
The length of the tangent from (4, 5) to the circle x2 + y2 = 16 is:
In the equation of the circle x2 + y2 = 16 then v intercept is (are):
Find the equation of circles that touch both the axes and pass through (− 4, −2) in general form
Find the equation of the circles with centre (2, 3) and passing through the intersection of the lines 3x – 2y – 1 = 0 and 4x + y – 27 = 0
If the equation 3x2 + (3 – p)xy + qy2 – 2px = 8pq represents a circle, find p and q. Also determine the centre and radius of the circle
Choose the correct alternative:
The equation of the circle passing through (1, 5) and (4, 1) and touching y-axis `x^2 + y^2 - 5x - 6y + 9 + lambda(4x + 3y - 19)` = where `lambda` is equal to
Choose the correct alternative:
The circle x2 + y2 = 4x + 8y + 5 intersects the line 3x – 4y = m at two distinct points if
Choose the correct alternative:
The centre of the circle inscribed in a square formed by the lines `x^2 - 8x - 12` = 0 and `y^2 - 14y + 45` = 0 is
Choose the correct alternative:
The radius of the circle passing through the points (6, 2) two of whose diameter are x + y = 6 and x + 2y = 4 is
Choose the correct alternative:
If the normals of the parabola y2 = 4x drawn at the end points of its latus rectum are tangents to the circle (x – 3)2 + (y + 2)2 = r2, then the value of r2 is
Choose the correct alternative:
Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centered at (0, y) passing through the origin and touching the circle C externally, then the radius of T is equal to