Advertisements
Advertisements
प्रश्न
Find the equation of the circles with centre (2, 3) and passing through the intersection of the lines 3x – 2y – 1 = 0 and 4x + y – 27 = 0
उत्तर
Centre (2, 3) = (h, k)
Point of intersection
Solve 3x – 2y – 1 = 0 .......(1)
4x + y – 27 = 0 .......(2)
(1) ⇒ 3x – 2y = 1
(2) × 2 ⇒ 8x + 2y = 54
11x = 55
x = 5
Put in (1)
15 – 2y – 1 = 0
14 = 2y
y = 7
Passing-through point is (5, 7)
Equation of circle be (x – h)2 + (y – k)2 = r2 .......(3)
(5 – 2)2 + (7 – 3)2 = r2
32 + 42 = r2
r2 = 25
∴ (3) ⇒ (x – 2)2 + (y – 3)2 = 25
x2 – 4x + 4 + y2 – 6y + 9 – 25 = 0
x2 + y2 – 4x – 6y – 12 = 0
APPEARS IN
संबंधित प्रश्न
Find the equation of the following circles having the centre (3, 5) and radius 5 units.
Find the centre and radius of the circle
x2 + y2 = 16
Find the centre and radius of the circle
x2 + y2 – 22x – 4y + 25 = 0
Find the centre and radius of the circle.
5x2 + 5y2+ 4x – 8y – 16 = 0
Find the centre and radius of the circle.
(x + 2) (x – 5) + (y – 2) (y – 1) = 0
Find the length of the tangent from (1, 2) to the circle x2 + y2 – 2x + 4y + 9 = 0.
(1, -2) is the centre of the circle x2 + y2 + ax + by – 4 = 0, then its radius:
The length of the tangent from (4, 5) to the circle x2 + y2 = 16 is:
The equation of the circle with centre on the x axis and passing through the origin is:
If the centre of the circle is (-a, -b) and radius is `sqrt("a"^2 - "b"^2)` then the equation of circle is:
If the perimeter of the circle is 8π units and centre is (2, 2) then the equation of the circle is:
If the circle touches the x-axis, y-axis, and the line x = 6 then the length of the diameter of the circle is:
Determine whether the points (– 2, 1), (0, 0) and (– 4, – 3) lie outside, on or inside the circle x2 + y2 – 5x + 2y – 5 = 0
Find centre and radius of the following circles
2x2 + 2y2 – 6x + 4y + 2 = 0
If the equation 3x2 + (3 – p)xy + qy2 – 2px = 8pq represents a circle, find p and q. Also determine the centre and radius of the circle
Choose the correct alternative:
The radius of the circle 3x2 + by2 + 4bx – 6by + b2 = 0 is
Choose the correct alternative:
If the normals of the parabola y2 = 4x drawn at the end points of its latus rectum are tangents to the circle (x – 3)2 + (y + 2)2 = r2, then the value of r2 is
Choose the correct alternative:
Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centered at (0, y) passing through the origin and touching the circle C externally, then the radius of T is equal to