Advertisements
Advertisements
प्रश्न
If the perimeter of a rectangular plot is 68 m and the length of its diagonal is 26 m, find its area.
उत्तर
Perimeter = 68 m and diagonal = 26m
Length + breadth = = 34m
Let length = xm
then breadth = (34 – x)m
According to the condition,
l2 + b2 = h2
(x)2 + (34 - x)2 = (26)2
⇒ x2 + 1156 + x2 - 68x = 676
⇒ 2x2 - 68x + 1156 - 676 = 0
⇒ 2x2 - 68x + 480 = 0
⇒ x2 - 34x + 240 = 0 ...(Dividing by 2)
⇒ x2 - 24x - 10x + 240 = 0
⇒ x(x - 24) -10(x - 24) = 0
⇒ (x - 24)(x - 10) = 0
Either x - 24 = 0,
then x = 24
or
x - 10 = 0,
then x = 10
∵ Length is greater than breadth
∴ Length = 24m
and breadth = (34 - 24) = 10m
and Area = l x b = 24 x 10 = 240m2.
APPEARS IN
संबंधित प्रश्न
Find the roots of the following quadratic equation by factorisation:
`2x^2 – x + 1/8 = 0`
Solve the following quadratic equations by factorization:
a2b2x2 + b2x - a2x - 1 = 0
Out of a group of swans, 7/2 times the square root of the total number are playing on the share of a pond. The two remaining ones are swinging in water. Find the total number of swans.
For the equation given below, find the value of ‘m’ so that the equation has equal roots. Also, find the solution of the equation:
x2 – (m + 2)x + (m + 5) = 0
If \[x = - \frac{1}{2}\],is a solution of the quadratic equation \[3 x^2 + 2kx - 3 = 0\] ,find the value of k.
Three consecutive natural numbers are such that the square of the first increased by the product of other two gives 154. Find the numbers.
The sum of the square of two numbers is 233. If one of the numbers is 3 less than twice the other number. Find the numbers.
In each of the following, determine whether the given values are solution of the given equation or not:
x2 - 3x + 2 = 0; x = 2, x = -1
The hypotenuse of grassy land in the shape of a right triangle is 1 metre more than twice the shortest side. If the third side is 7 metres more than the shortest side, find the sides of the grassy land.
If the discriminant of the quadratic equation 3x2 - 2x + c = 0 is 16, then the value of c is ______.