हिंदी

If the yield strength of steel is 2.5 × 108 Nm–2, what is the maximum weight that can be hung at the lower end of the wire? - Physics

Advertisements
Advertisements

प्रश्न

If the yield strength of steel is 2.5 × 108 Nm–2, what is the maximum weight that can be hung at the lower end of the wire?

दीर्घउत्तर

उत्तर

Clearly, tension will be maximum at x = L

∴ T = μgL + Mg = (m + M)g  ......[∵ m = μL]

The yield force = (Yield strength Y) area = 250 × 106 × π × (10–3)2 = 25 × πN

At the yield point, T = Yield force

⇒ (m + M)g = 250 × π

m = π × (10–3)2 × 10 × 7860 << M

∴ Mg = 250 × π

Hence, M = `(250 xx pi)/10` = 25 × π = 75 kg.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Mechanical Properties of Solids - Exercises [पृष्ठ ७०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
अध्याय 9 Mechanical Properties of Solids
Exercises | Q 9.25 (b) | पृष्ठ ७०

संबंधित प्रश्न

A steel wire of length 4.7 m and cross-sectional area 3.0 × 10–5 m2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 × 10–5 m2 under a given load. What is the ratio of Young’s modulus of steel to that of copper?


The stress-strain graphs for materials A and B are shown in Figure

The graphs are drawn to the same scale.

(a) Which of the materials has the greater Young’s modulus?

(b) Which of the two is the stronger material?


Read the following statements below carefully and state, with reasons, if it is true or false

The Young’s modulus of rubber is greater than that of steel;


Four identical hollow cylindrical columns of mild steel support a big structure of mass 50,000 kg. The inner and outer radii of each column are 30 cm and 60 cm respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.


A wire elongates by 1.0 mm when a load W is hung from it. If this wire goes over a a pulley and two weights W each are hung at the two ends, he elongation of he wire will be 


The length of a metal wire is l1 when the tension in it T1 and is l2 when the tension is T2. The natural length of the wire is


A student plots a graph from his reading on the determination of Young modulus of a metal wire but forgets to put the labels. the quantities on X and Y-axes may be respectively


(a) weight hung and length increased
(b) stress applied and length increased
(c) stress applied and strain developed
(d) length increased and the weight hung.


A truck is pulling a car out of a ditch by means of a steel cable that is 9.1 m long and has a radius of 5 mm. When the car just begins to move, the tension in the cable is 800 N. How much has the cable stretched? (Young’s modulus for steel is 2 × 1011 Nm–2.)


In nature, the failure of structural members usually result from large torque because of twisting or bending rather than due to tensile or compressive strains. This process of structural breakdown is called buckling and in cases of tall cylindrical structures like trees, the torque is caused by its own weight bending the structure. Thus the vertical through the centre of gravity does not fall within the base. The elastic torque caused because of this bending about the central axis of the tree is given by `(Ypir^4)/(4R) . Y` is the Young’s modulus, r is the radius of the trunk and R is the radius of curvature of the bent surface along the height of the tree containing the centre of gravity (the neutral surface). Estimate the critical height of a tree for a given radius of the trunk.


If Y, K and η are the values of Young's modulus, bulk modulus and modulus of rigidity of any material respectively. Choose the correct relation for these parameters.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×