हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Student Plots a Graph from His Reading on the Determination of Young Modulus of a Metal Wire but Forgets to Put the Labels. the Quantities on X and Y-axes May Be Respectively - Physics

Advertisements
Advertisements

प्रश्न

A student plots a graph from his reading on the determination of Young modulus of a metal wire but forgets to put the labels. the quantities on X and Y-axes may be respectively


(a) weight hung and length increased
(b) stress applied and length increased
(c) stress applied and strain developed
(d) length increased and the weight hung.

टिप्पणी लिखिए

उत्तर

All options are correct. 
(a) When a weight is loaded on a wire, the length of the wire increases. The relationship between weight and length is linear.
(b) When a weight is loaded, it produces stress on the wire. The relationship between stress and increase in length is also linear.
(c) When stress is applied, strain develops. Therefore, both are linearly related. 
(d) Since the value of Y  for the wire is unknown, X may also be the increase in its length. Nevertheless, they still show the same linear relationship.  

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Some Mechanical Properties of Matter - MCQ [पृष्ठ २९९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 14 Some Mechanical Properties of Matter
MCQ | Q 1 | पृष्ठ २९९

संबंधित प्रश्न

The stress-strain graphs for materials A and B are shown in Figure

The graphs are drawn to the same scale.

(a) Which of the materials has the greater Young’s modulus?

(b) Which of the two is the stronger material?


Two wires of diameter 0.25 cm, one made of steel and the other made of brass are loaded as shown in Fig. 9.13. The unloaded length of steel wire is 1.5 m and that of brass wire is 1.0 m. Compute the elongations of the steel and the brass wires.


Two wires A and B are made of same material. The wire A has a length l and diameter rwhile the wire B has a length 2l and diameter r/2. If the two wires are stretched by the same force, the elongation in A divided by the elongation in B is 


The length of a metal wire is l1 when the tension in it T1 and is l2 when the tension is T2. The natural length of the wire is


A steel rod of cross-sectional area 4 cm2 and 2 m shrinks by 0.1 cm as the temperature decreases in night. If the rod is clamped at both ends during the day hours, find the tension developed in it during night hours. Young modulus of steel = 1.9 × 1011 N m−2.


A uniform rectangular block of mass of 50 kg is hung horizontally with the help of three wires A, B and C each of length and area of 2m and 10mm2 respectively as shown in the figure. The central wire is passing through the centre of gravity and is made of material of Young's modulus 7.5 x 1010 Nm−2 and the other two wires A and C symmetrically placed on either side of the wire B are of Young's modulus 1011 Nm2  The tension in the wires A and B will be in the ratio of: 


The temperature of a wire is doubled. The Young’s modulus of elasticity ______.


The temperature of a wire is doubled. The Young’s modulus of elasticity ______.


A rigid bar of mass M is supported symmetrically by three wires each of length l. Those at each end are of copper and the middle one is of iron. The ratio of their diameters, if each is to have the same tension, is equal to ______.


The Young’s modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress?


A steel rod (Y = 2.0 × 1011 Nm–2; and α = 10–50 C–1) of length 1 m and area of cross-section 1 cm2 is heated from 0°C to 200°C, without being allowed to extend or bend. What is the tension produced in the rod?


A truck is pulling a car out of a ditch by means of a steel cable that is 9.1 m long and has a radius of 5 mm. When the car just begins to move, the tension in the cable is 800 N. How much has the cable stretched? (Young’s modulus for steel is 2 × 1011 Nm–2.)


A steel rod of length 2l, cross sectional area A and mass M is set rotating in a horizontal plane about an axis passing through the centre. If Y is the Young’s modulus for steel, find the extension in the length of the rod. (Assume the rod is uniform.)


In nature, the failure of structural members usually result from large torque because of twisting or bending rather than due to tensile or compressive strains. This process of structural breakdown is called buckling and in cases of tall cylindrical structures like trees, the torque is caused by its own weight bending the structure. Thus the vertical through the centre of gravity does not fall within the base. The elastic torque caused because of this bending about the central axis of the tree is given by `(Ypir^4)/(4R) . Y` is the Young’s modulus, r is the radius of the trunk and R is the radius of curvature of the bent surface along the height of the tree containing the centre of gravity (the neutral surface). Estimate the critical height of a tree for a given radius of the trunk.


A metal wire of length L, area of cross section A and Young's modulus Y behaves as a spring of spring constant k given by:


A uniform metal rod of 2 mm2 cross section is heated from 0°C to 20°C. The coefficient of linear expansion of the rod is 12 × 10-6/°C, it's Young's modulus is 1011 N/m2. The energy stored per unit volume of the rod is ______.


If the length of a wire is made double and the radius is halved of its respective values. Then, Young's modules of the material of the wire will ______.


The force required to stretch a wire of cross section 1 cm2 to double its length will be ______.

(Given Young's modulus of the wire = 2 × 1011 N/m2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×