हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

A Steel Rod of Cross-sectional Area 4 Cm2 and 2 M Shrinks by 0.1 Cm as the Temperature Decreases in Night. If the Rod is Clamped at Both Ends During the Day Hours, - Physics

Advertisements
Advertisements

प्रश्न

A steel rod of cross-sectional area 4 cm2 and 2 m shrinks by 0.1 cm as the temperature decreases in night. If the rod is clamped at both ends during the day hours, find the tension developed in it during night hours. Young modulus of steel = 1.9 × 1011 N m−2.

टिप्पणी लिखिए

उत्तर

Given:
Cross-sectional area of steel rod A = 4 cm2 = 4 × 10−4 m2
Length of steel rod L = 2 m
Compression during night hours ΔL = 0.1 cm = 10−3 m
Young modulus of steel Y = 1.9 × 1011 N m−2

Let the tension developed at night be F.

\[Y = \frac{F}{A} \times \frac{L}{∆ L}\]
\[ \Rightarrow F = \frac{YA ∆ L}{L}\]
\[ = \frac{1 . 9 \times {10}^{11} \times 4 \times {10}^{- 4} \times {10}^{- 3}}{2}\]
\[ = 3 . 8 \times {10}^4 N\]

∴ Required tension developed in steel rod during night hours = 3.8 × 104 N.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Some Mechanical Properties of Matter - Exercise [पृष्ठ ३००]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 14 Some Mechanical Properties of Matter
Exercise | Q 8 | पृष्ठ ३००

संबंधित प्रश्न

The figure shows the strain-stress curve for a given material. What are (a) Young’s modulus and (b) approximate yield strength for this material?


The stress-strain graphs for materials A and B are shown in Figure

The graphs are drawn to the same scale.

(a) Which of the materials has the greater Young’s modulus?

(b) Which of the two is the stronger material?


Read the following statements below carefully and state, with reasons, if it is true or false

The Young’s modulus of rubber is greater than that of steel;


Two wires of diameter 0.25 cm, one made of steel and the other made of brass are loaded as shown in Fig. 9.13. The unloaded length of steel wire is 1.5 m and that of brass wire is 1.0 m. Compute the elongations of the steel and the brass wires.


Four identical hollow cylindrical columns of mild steel support a big structure of mass 50,000 kg. The inner and outer radii of each column are 30 cm and 60 cm respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.


The length of a metal wire is l1 when the tension in it T1 and is l2 when the tension is T2. The natural length of the wire is


A student plots a graph from his reading on the determination of Young modulus of a metal wire but forgets to put the labels. the quantities on X and Y-axes may be respectively


(a) weight hung and length increased
(b) stress applied and length increased
(c) stress applied and strain developed
(d) length increased and the weight hung.


A copper wire of cross-sectional area 0.01 cm2 is under a tension of 20N. Find the decrease in the cross-sectional area. Young modulus of copper = 1.1 × 1011 N m−2 and Poisson ratio = 0.32.

`["Hint" : (Delta"A")/"A"=2(Delta"r")/"r"]`


The temperature of a wire is doubled. The Young’s modulus of elasticity ______.


Identical springs of steel and copper are equally stretched. On which, more work will have to be done?


If the yield strength of steel is 2.5 × 108 Nm–2, what is the maximum weight that can be hung at the lower end of the wire?


In nature, the failure of structural members usually result from large torque because of twisting or bending rather than due to tensile or compressive strains. This process of structural breakdown is called buckling and in cases of tall cylindrical structures like trees, the torque is caused by its own weight bending the structure. Thus the vertical through the centre of gravity does not fall within the base. The elastic torque caused because of this bending about the central axis of the tree is given by `(Ypir^4)/(4R) . Y` is the Young’s modulus, r is the radius of the trunk and R is the radius of curvature of the bent surface along the height of the tree containing the centre of gravity (the neutral surface). Estimate the critical height of a tree for a given radius of the trunk.


If Y, K and η are the values of Young's modulus, bulk modulus and modulus of rigidity of any material respectively. Choose the correct relation for these parameters.


A metal wire of length L, area of cross section A and Young's modulus Y behaves as a spring of spring constant k given by:


A uniform metal rod of 2 mm2 cross section is heated from 0°C to 20°C. The coefficient of linear expansion of the rod is 12 × 10-6/°C, it's Young's modulus is 1011 N/m2. The energy stored per unit volume of the rod is ______.


If the length of a wire is made double and the radius is halved of its respective values. Then, Young's modules of the material of the wire will ______.


The force required to stretch a wire of cross section 1 cm2 to double its length will be ______.

(Given Young's modulus of the wire = 2 × 1011 N/m2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×