Advertisements
Advertisements
प्रश्न
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
उत्तर
Given that
`x^2 + 1/[9x^2] = 25/36`
⇒ `x^2 + 1/( 3x )^2 = 25/36` ...(1)
Now consider the expansion of `( x + 1/(3x) )^2` :
`( x + 1/(3x))^2 = x^2 + 1/(3x)^2 + 2 xx x xx 1/(3x)`
= `x^2 + 1/(3x)^2 + 2/3`
= `25/36 + 2/3` [From(1)]
= `[ 25 + 24 ]/36`
= `49/36`
⇒ `x + 1/(3x) = +-sqrt(49/36)`
⇒ `x + 1/(3x) = +- 7/6`
We need to find `x^3 + 1/[27x^3]` :
Let us consider the expansion of `( x + 1/(3x))^3` :
`( x + 1/(3x))^3 = x^3 + 1/[27x^3] + 3 xx x xx 1/[3x] xx (x + 1/(3x))`
⇒ `( 7/6 )^3 = x^3 + 1/[27x^3] + 3 xx x xx 1/[3x] xx ( x + 1/[3x])`
⇒ `[343]/[216] = x^3 + 1/[27x^3] + x + 1/(3x)`
⇒ `[343]/[216] = x^3 + 1/[27x^3] + 7/6` [∵ `x + 1/3x = 7/6` ]
⇒ `([343]/[216] - 7/6) = x^3 + 1/[27x^3]`
⇒ `x^3 + 1/[27x^3] = [(343 - 252)/216]`
⇒ `x^3 + 1/[27x^3] = (91/216)`
APPEARS IN
संबंधित प्रश्न
Expand : ( X - 8 ) ( X + 10 )
Expand : `( 2x - 1/x )( 3x + 2/x )`
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2