Advertisements
Advertisements
प्रश्न
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
उत्तर
( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 4x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 4x4 - 16x3 + 24x2 + 64x - 128
Hence,
Constant term = -128
APPEARS IN
संबंधित प्रश्न
Expand : ( X - 8 ) ( X + 10 )
Expand : ( 5x - 3y - 2 )2
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2
If x2 + `x^(1/2)`= 7 and x ≠ 0; find the value of :
7x3 + 8x - `7/x^3 - 8/x`
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x^3 - 1/x^3`
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`