Advertisements
Advertisements
प्रश्न
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`
उत्तर
Given x = `1/[ 5 - x ]`;
By cross multiplication
⇒ x(5 - x) = 1
⇒ x2 - 5x = -1
⇒ x2 + 1 = 5x
⇒ `[ x^2 + 1]/x = 5`
⇒ `[ x + 1/x ] = 5` ...(1)
We know that
`( x^3 + 1/x^3 ) = ( x + 1/x )^3 - 3( x + 1/x )`
= `(5)^3 - 3(5)` ...[From equation (1)]
= `x^3 + 1/x^3`
= 125 - 15
= 110
APPEARS IN
संबंधित प्रश्न
Expand : ( x - 8 )( x - 10 )
Expand : `( 3a + 2/b )( 2a - 3/b )`
Expand : ( 5x - 3y - 2 )2
Expand : `( x - 1/x + 5)^2`
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc