Advertisements
Advertisements
प्रश्न
Expand : `( x - 1/x + 5)^2`
उत्तर
`( x - 1/x + 5)^2 = (x)^2 + (1/x)^2 + (5)^2 - 2(x)(1/x) - 2(1/x)(5) + 2(5)(x)`
=`x^2 + 1/x^2 + 25 - 2 - 10/x + 10x`
=`x^2 + 1/x^2 + 23 - 10/x + 10x`
APPEARS IN
संबंधित प्रश्न
Expand : ( X - 8 ) ( X + 10 )
Expand : ( x - 8 )( x - 10 )
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc