Advertisements
Advertisements
प्रश्न
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
उत्तर
We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca ) .......(1)
Given that, a2 + b2 + c2 = 50 and a + b + c = 12.
We need to find ab + bc + ca :
Substitute the values of (a2 + b2 + c2 ) and ( a + b + c )
in the identity (1), we have
(12)2 = 50 + 2( ab + bc + ca )
⇒ 144 = 50 + 2( ab + bc + ca )
⇒ 94 = 2( ab + bc + ca)
⇒ ab + bc + ca = `94/2`
⇒ ab + bc + ca = 47
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 )( x - 10 )
Expand : `( x - 1/x + 5)^2`
If a + `1/a` = m and a ≠ 0 ; find in terms of 'm'; the value of :
`a - 1/a`
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : The sum of their squares
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2