Advertisements
Advertisements
Question
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
Solution
We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca ) .......(1)
Given that, a2 + b2 + c2 = 50 and a + b + c = 12.
We need to find ab + bc + ca :
Substitute the values of (a2 + b2 + c2 ) and ( a + b + c )
in the identity (1), we have
(12)2 = 50 + 2( ab + bc + ca )
⇒ 144 = 50 + 2( ab + bc + ca )
⇒ 94 = 2( ab + bc + ca)
⇒ ab + bc + ca = `94/2`
⇒ ab + bc + ca = 47
APPEARS IN
RELATED QUESTIONS
Expand : `( 3a + 2/b )( 2a - 3/b )`
Expand : ( x + y - z )2
Expand : ( 5a - 3b + c )2
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc