Advertisements
Advertisements
Question
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
Solution
(i) 2( x2 + 1 ) = 5x
( x2 + 1 ) = `5/2`x
Dividing by x, we have
`( x^2 + 1 )/x = 5/2`
⇒ `( x + 1/x ) = 5/2` .....(1)
Now consider the expansion of `( x + 1/x )^2` :
`( x + 1/x )^2 = x^2 + 1/x^2 + 2`
⇒ `(5/2)^2 = x^2 + 1/x^2 + 2` [From(1)]
⇒ `(5/2)^2 - 2 = x^2 + 1/x^2`
⇒ `25/4 - 2 = x^2 + 1/x^2`
⇒ `x^2 + 1/x^2 = [25 - 8 ]/4`
⇒ `x^2 + 1/x^2 = 17/4` ....(2)
Now consider the expansion of `( x - 1/x )^2` :
`( x - 1/x )^2 = x^2 + 1/x^2 - 2`
⇒ `( x - 1/x )^2 = 17/4 - 2` [from(2)]
⇒ `( x - 1/x )^2 = [ 17 - 8]/4`
⇒ `( x - 1/x )^2 = 9/4`
⇒ `( x - 1/x )^2 = +- 3/2` ....(3)
(ii) We know that,
`( x^3 - 1/x^3 ) = ( x - 1/x )^3 + 3( x - 1/x )`
∴ `( x^3 - 1/x^3 ) = ( +- 3/2 )^3 + 3(+- 3/2)` [from(3)]
= `+- 27/8 + 9/2`
⇒ `( x^3 - 1/x^3 ) = +- [27 + 36]/8`
⇒ `( x^3 - 1/x^3 ) = +- 63/8`
APPEARS IN
RELATED QUESTIONS
Expand : ( 5a - 3b + c )2
Expand : ( 5x - 3y - 2 )2
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x^3 - 1/x^3`
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`