Advertisements
Advertisements
Question
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
Solution
Given that
`x^2 + 1/[9x^2] = 25/36`
⇒ `x^2 + 1/( 3x )^2 = 25/36` ...(1)
Now consider the expansion of `( x + 1/(3x) )^2` :
`( x + 1/(3x))^2 = x^2 + 1/(3x)^2 + 2 xx x xx 1/(3x)`
= `x^2 + 1/(3x)^2 + 2/3`
= `25/36 + 2/3` [From(1)]
= `[ 25 + 24 ]/36`
= `49/36`
⇒ `x + 1/(3x) = +-sqrt(49/36)`
⇒ `x + 1/(3x) = +- 7/6`
We need to find `x^3 + 1/[27x^3]` :
Let us consider the expansion of `( x + 1/(3x))^3` :
`( x + 1/(3x))^3 = x^3 + 1/[27x^3] + 3 xx x xx 1/[3x] xx (x + 1/(3x))`
⇒ `( 7/6 )^3 = x^3 + 1/[27x^3] + 3 xx x xx 1/[3x] xx ( x + 1/[3x])`
⇒ `[343]/[216] = x^3 + 1/[27x^3] + x + 1/(3x)`
⇒ `[343]/[216] = x^3 + 1/[27x^3] + 7/6` [∵ `x + 1/3x = 7/6` ]
⇒ `([343]/[216] - 7/6) = x^3 + 1/[27x^3]`
⇒ `x^3 + 1/[27x^3] = [(343 - 252)/216]`
⇒ `x^3 + 1/[27x^3] = (91/216)`
APPEARS IN
RELATED QUESTIONS
Expand : ( x - 2y + 2 )2
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
If a + `1/a` = m and a ≠ 0 ; find in terms of 'm'; the value of :
`a - 1/a`
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`