Advertisements
Advertisements
Question
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
Solution
( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 2x2( x2 - 8x + 16 ) - 8( x2 - 8x + 16 )
= 2x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 2x4 - 16x3 + 24x2 + 64x - 128
Hence,
Coefficient of x3 = - 16
APPEARS IN
RELATED QUESTIONS
Expand : `( 2x - 1/x )( 3x + 2/x )`
Expand : `( 3a + 2/b )( 2a - 3/b )`
Expand : ( 5x - 3y - 2 )2
Expand : `( x - 1/x + 5)^2`
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x - 1/x`
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`