Advertisements
Advertisements
Question
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
Solution
( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 4x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 4x4 - 16x3 + 24x2 + 64x - 128
Hence,
Constant term = -128
APPEARS IN
RELATED QUESTIONS
Expand : ( x + 8 ) ( x + 10 )
Expand : ( x + y - z )2
Expand : ( x - 2y + 2 )2
Expand : ( 5a - 3b + c )2
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x^3 - 1/x^3`
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2