Advertisements
Advertisements
प्रश्न
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
बेरीज
उत्तर
( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 4x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 4x4 - 16x3 + 24x2 + 64x - 128
Hence,
Constant term = -128
shaalaa.com
Expansion of Formula
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 ) ( x + 10 )
Expand : ( x + 8 )( x - 10 )
Expand : ( x + y - z )2
Expand : ( 5a - 3b + c )2
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x - 1/x`
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2