Advertisements
Advertisements
प्रश्न
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
उत्तर
( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 2x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 2x4 - 16x3 + 24x2 + 64x - 128
Hence,
Coefficient of x2 = 24
APPEARS IN
संबंधित प्रश्न
Expand : ( 5x - 3y - 2 )2
If a + `1/a` = m and a ≠ 0 ; find in terms of 'm'; the value of :
`a - 1/a`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If x2 + `x^(1/2)`= 7 and x ≠ 0; find the value of :
7x3 + 8x - `7/x^3 - 8/x`
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : The sum of their squares
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc