Advertisements
Advertisements
प्रश्न
If x2 + `x^(1/2)`= 7 and x ≠ 0; find the value of :
7x3 + 8x - `7/x^3 - 8/x`
उत्तर
Given that `x^2 + 1/x^2 = 7`
We need to find the value of 7x3 + 8x - `7/x^3 - 8/x`
Consider the given equation :
x2 + `1/x^2` - 2 = 7 - 2 [ subtract 2 from both the sides ]
⇒ `( x - 1/x)^2 = 5`
⇒ `( x - 1/x ) = +- sqrt5` ....(1)
∴ `7x^3 + 8x - 7/x^3 - 8/x = 7x^3 - 7/x^3 + 8x - 8/x`
= `7( x^3 - 1/x^3 ) + 8( x - 1/x )` .....(2)
Now consider the expansion of `( x - 1/x )^3` :
`( x - 1/x )^3 = x^3 - 1/x^3 - 3( x - 1/x )`
⇒ `x^3 - 1/x^3 = ( x - 1/x )^3 + 3( x - 1/x)`
⇒ `x^3 - 1/x^3 = (sqrt5)^3 + 3(sqrt5)` ....(3)
Now substitute the value of `x^3 - 1/x^3` in equation (2), we have
`7x^3 + 8x - 7/x^3 - 8/x = 7( x^3 - 1/x^3) + 8( x - 1/x )`
⇒ `7x^3 + 8x - 7/x^3 - 8/x = 7[(sqrt5)^3 + 3(sqrt5)] + 8[sqrt5]` [From(3)]
⇒ `7x^3 + 8x - 7/x^3 - 8/x = 7[5(sqrt5) + 3(sqrt5)] + 8[sqrt5]]`
⇒ `7x^3 + 8x - 7/x^3 - 8/x = 64[sqrt5]`
APPEARS IN
संबंधित प्रश्न
Expand : `( 2x - 1/x )( 3x + 2/x )`
Expand : ( x + y - z )2
Expand : ( x - 2y + 2 )2
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`