Advertisements
Advertisements
प्रश्न
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`
उत्तर
Given x = `1/( x - 5 )`;
By cross multiplication,
⇒ x (x - 5) = 1
⇒ x2 - 5x = 1
⇒ x2 - 1 = 5x ....(1)
Dividing both sides by x,
`( x - 1/x )^2 = x^2 + 1/x^2 - 2`
⇒ `(5)^2 = x^2 + 1/x^2 - 2`
⇒ `x^2 + 1/x^2 = 25 + 2 = 27` ....(2)
Let us consider the expansion of `( x + 1/x )^2` :
`( x + 1/x )^2 = x^2 + 1/x^2 + 2`
⇒ `( x + 1/x )^2 = 27 + 2` [from(2)]
⇒ `( x + 1/x )^2 = 29`
⇒ `( x + 1/x ) = +- sqrt29` ....(3)
We know that,
`x^2 - 1/x^2 = ( x + 1/x )( x - 1/x )`= `( +- sqrt29 )(5)` [From equation (1) and (3)]
`x^2 - 1/x^2 = +- 5sqrt29`
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 )( x - 10 )
Expand : ( X - 8 ) ( X + 10 )
Expand : ( x - 2y + 2 )2
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
If a + `1/a` = m and a ≠ 0 ; find in terms of 'm'; the value of :
`a - 1/a`
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`