Advertisements
Advertisements
प्रश्न
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
उत्तर
a2 + b2 + c2 = 50 and ab + bc + ca = 47
Since ( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca )
∴ ( a + b + c )2 = 50 + 2(47)
⇒ ( a + b + c )2 = 50 + 94 = 144
⇒ a + b +c = `sqrt144 = +- 12`
∴ a + b + c = `+-12`
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 ) ( x + 10 )
Expand : ( X - 8 ) ( X + 10 )
Expand : ( 5a - 3b + c )2
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
If x2 + `x^(1/2)`= 7 and x ≠ 0; find the value of :
7x3 + 8x - `7/x^3 - 8/x`
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`