Advertisements
Advertisements
प्रश्न
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
उत्तर
3x - `4/x` = 4;
We need to find 27x3 - `64/x^3`
Let us now consider the expansion of `( 3x - 4/x )^3` :
`( 3x - 4/x )^3 = 27x^3 - 64/x^3 - 3 xx 3x xx 4/x( 3x - 4/x )`
⇒ `(4)^3 = 27x^3 - 64/x^3 - 144 ["Given :" 3x - 4/x = 4]`
⇒ 64 + 144 = 27x3 - `64/x^3`
⇒ 27x3 - `64/x^3` = 208
APPEARS IN
संबंधित प्रश्न
Expand : `( x - 1/x + 5)^2`
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
If a + `1/a` = m and a ≠ 0 ; find in terms of 'm'; the value of :
`a - 1/a`
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.