Advertisements
Advertisements
प्रश्न
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
बेरीज
उत्तर
`a^2 - 1/a^2 = ( a + 1/a )(a - 1/a )` ...[Since a2 - b2 = (a + b)(a - b)]
= `m(+- sqrt(m^2 - 4) )`
= `+-msqrt(m^2 - 4)`
shaalaa.com
Expansion of Formula
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 ) ( x + 10 )
Expand : ( x + 8 )( x - 10 )
Expand : ( x - 2y + 2 )2
Expand : ( 5x - 3y - 2 )2
Expand : `( x - 1/x + 5)^2`
If a + `1/a` = m and a ≠ 0 ; find in terms of 'm'; the value of :
`a - 1/a`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x^3 - 1/x^3`
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc