Advertisements
Advertisements
प्रश्न
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
उत्तर
`a^2 - 1/a^2 = ( a + 1/a )(a - 1/a )` ...[Since a2 - b2 = (a + b)(a - b)]
= `m(+- sqrt(m^2 - 4) )`
= `+-msqrt(m^2 - 4)`
APPEARS IN
संबंधित प्रश्न
Expand : ( 5x - 3y - 2 )2
Expand : `( x - 1/x + 5)^2`
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x - 1/x`
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc