Advertisements
Advertisements
प्रश्न
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
उत्तर
We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca ) .....(1)
Given that, a + b + c = p and ab + bc + ca = q
We need to find a2 + b2 + c2 :
Substitute the values of ( ab + bc + ca ) and ( a + b + c )
in the identity (1), we have
(p)2 = a2 + b2 + c2 + 2q
⇒ p2 = a2 + b2 + c2 + 2q
⇒ a2 + b2 + c2 = p2 - 2q
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 ) ( x + 10 )
Expand : ( x - 8 )( x - 10 )
Expand : `( 3a + 2/b )( 2a - 3/b )`
Expand : ( x + y - z )2
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x - 1/x`
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x^3 - 1/x^3`