Advertisements
Advertisements
Question
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
Solution
We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca ) .....(1)
Given that, a + b + c = p and ab + bc + ca = q
We need to find a2 + b2 + c2 :
Substitute the values of ( ab + bc + ca ) and ( a + b + c )
in the identity (1), we have
(p)2 = a2 + b2 + c2 + 2q
⇒ p2 = a2 + b2 + c2 + 2q
⇒ a2 + b2 + c2 = p2 - 2q
APPEARS IN
RELATED QUESTIONS
Expand : ( X - 8 ) ( X + 10 )
Expand : ( 5x - 3y - 2 )2
Expand : `( x - 1/x + 5)^2`
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc