Advertisements
Advertisements
Question
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc
Solution
Given that 3a + 5b + 4c = 0
3a + 5b = - 4c
Cubing both sides,
(3a + 5b)3 = (-4c)3
⇒ (3a)3 + (5b)3 + 3 x 3a x 5b (3a + 5b) = -64c3
⇒ 27a3 + 125b3 + 45ab x (-4c) = -64c3
⇒ 27a3 + 125b3 - 180abc = -64c3
⇒ 27a3 + 125b3 + 64c3 = 180abc
Hence proved.
APPEARS IN
RELATED QUESTIONS
Expand : `( 3a + 2/b )( 2a - 3/b )`
Expand : ( x + y - z )2
Expand : ( x - 2y + 2 )2
Expand : `( x - 1/x + 5)^2`
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2