Advertisements
Advertisements
प्रश्न
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc
उत्तर
Given that 3a + 5b + 4c = 0
3a + 5b = - 4c
Cubing both sides,
(3a + 5b)3 = (-4c)3
⇒ (3a)3 + (5b)3 + 3 x 3a x 5b (3a + 5b) = -64c3
⇒ 27a3 + 125b3 + 45ab x (-4c) = -64c3
⇒ 27a3 + 125b3 - 180abc = -64c3
⇒ 27a3 + 125b3 + 64c3 = 180abc
Hence proved.
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 ) ( x + 10 )
Expand : ( x + 8 )( x - 10 )
Expand : ( x - 8 )( x - 10 )
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x^3 - 1/x^3`
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`