Advertisements
Advertisements
प्रश्न
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x^3 - 1/x^3`
उत्तर
Given `[x^2 + 1]/x = 3 1/3`
`[x^2 + 1]/x = 10/3`
`[x + 1/x] = 10/3`
Squaring on both sides, we get
`x^2 + 1/x^2 + 2 = 100/9`
`x^2 + 1/x^2 = [ 100 - 18 ]/9 = 82/9`
`x - 1/x = sqrt[( x + 1/x )^2 - 4] = sqrt( 100/9 - 4 ) = sqrt( 64/9) = 8/3`
∴ `x - 1/x = 8/3`
Cubing both sides, we get
`( x - 1/x )^3 = 512/27`
`x^3 - 1/x^3 - 3( x - 1/x ) = 512/27`
`x^3 - 1/x^3 = 512/27 + 8 = [ 512 + 216 ]/27 = 728/27`
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 ) ( x + 10 )
Expand : ( x + 8 )( x - 10 )
Expand : ( x - 8 )( x - 10 )
Expand : ( x - 2y + 2 )2
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x - 1/x`
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2