Advertisements
Advertisements
प्रश्न
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product
उत्तर
Given difference between two positive numbers is 4 and difference between their cubes is 316.
Let the positive numbers be a and b
a - b = 4
a3 - b3 = 316
Cubing both sides,
(a - b)3 = 64
a3 - b3 - 3ab(a - b) = 64
Given a3 - b3 = 316
So 316 - 64 = 3ab(4)
252 = 12ab
So ab = 21; product of numbers is 21
APPEARS IN
संबंधित प्रश्न
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
If x2 + `x^(1/2)`= 7 and x ≠ 0; find the value of :
7x3 + 8x - `7/x^3 - 8/x`
The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`