Advertisements
Advertisements
प्रश्न
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
उत्तर
( 2x2 - 8 )( x - 4 )2
= ( 2x2 - 8 )( x2 - 8x + 16 )
= 2x2( x2 - 8x + 16 ) - 8( x2 - 8x + 16 )
= 2x4 - 16x3 + 32x2 - 8x2 + 64x -128
= 2x4 - 16x3 + 24x2 + 64x - 128
Hence,
Coefficient of x3 = - 16
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 )( x - 10 )
Expand : ( 5x - 3y - 2 )2
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If x2 + `x^(1/2)`= 7 and x ≠ 0; find the value of :
7x3 + 8x - `7/x^3 - 8/x`
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2
The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc