Advertisements
Advertisements
प्रश्न
The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.
उत्तर
Let a, b be the two numbers.
.'. a + b = 7 and a3 + b3 = 133
(a + b)3 = a3 + b3 + 3ab (a + b)
⇒ (7)3 = 133 + 3ab (7)
⇒ 343 = 133 + 21ab
⇒ 21ab = 343 - 133 = 210
⇒ 21ab = 210
⇒ ab= 10
Now a2 + b2 = (a + b)2 - 2ab
= 72 - 2 x 10 = 49 - 20 = 29
APPEARS IN
संबंधित प्रश्न
Expand : ( X - 8 ) ( X + 10 )
Expand : `( 2x - 1/x )( 3x + 2/x )`
Expand : `( 3a + 2/b )( 2a - 3/b )`
Expand : ( x + y - z )2
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2