Advertisements
Advertisements
Question
The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.
Solution
Let a, b be the two numbers.
.'. a + b = 7 and a3 + b3 = 133
(a + b)3 = a3 + b3 + 3ab (a + b)
⇒ (7)3 = 133 + 3ab (7)
⇒ 343 = 133 + 21ab
⇒ 21ab = 343 - 133 = 210
⇒ 21ab = 210
⇒ ab= 10
Now a2 + b2 = (a + b)2 - 2ab
= 72 - 2 x 10 = 49 - 20 = 29
APPEARS IN
RELATED QUESTIONS
Expand : ( x + 8 )( x - 10 )
Expand : ( x - 8 )( x - 10 )
Expand : `( 2x - 1/x )( 3x + 2/x )`
Expand : ( x - 2y + 2 )2
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x - 1/x`
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x^3 - 1/x^3`
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc