Advertisements
Advertisements
Question
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x - 1/x`
Solution
Given `[x^2 + 1]/x = 3 1/3`
`[x^2 + 1]/x = 10/3`
`[x + 1/x] = 10/3`
Squaring on both sides, we get
`x^2 + 1/x^2 + 2 = 100/9`
`x^2 + 1/x^2 = [ 100 - 18 ]/9 = 82/9`
`x - 1/x = sqrt[( x + 1/x )^2 - 4] = sqrt( 100/9 - 4 ) = sqrt( 64/9) = 8/3`
∴ `x - 1/x = 8/3`
APPEARS IN
RELATED QUESTIONS
Expand : ( x + 8 )( x - 10 )
Expand : ( x + y - z )2
Expand : ( x - 2y + 2 )2
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`