Advertisements
Advertisements
प्रश्न
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x - 1/x`
उत्तर
Given `[x^2 + 1]/x = 3 1/3`
`[x^2 + 1]/x = 10/3`
`[x + 1/x] = 10/3`
Squaring on both sides, we get
`x^2 + 1/x^2 + 2 = 100/9`
`x^2 + 1/x^2 = [ 100 - 18 ]/9 = 82/9`
`x - 1/x = sqrt[( x + 1/x )^2 - 4] = sqrt( 100/9 - 4 ) = sqrt( 64/9) = 8/3`
∴ `x - 1/x = 8/3`
APPEARS IN
संबंधित प्रश्न
Expand : ( x - 8 )( x - 10 )
Expand : `( 3a + 2/b )( 2a - 3/b )`
Expand : ( 5a - 3b + c )2
Expand : `( x - 1/x + 5)^2`
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If x2 + `x^(1/2)`= 7 and x ≠ 0; find the value of :
7x3 + 8x - `7/x^3 - 8/x`
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : The sum of their squares
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`