Advertisements
Advertisements
प्रश्न
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`
उत्तर
Given x = `1/( x - 5 )`;
By cross multiplication,
⇒ x (x - 5) = 1
⇒ x2 - 5x = 1
⇒ x2 - 1 = 5x ....(1)
Dividing both sides by x,
`( x - 1/x )^2 = x^2 + 1/x^2 - 2`
⇒ `(5)^2 = x^2 + 1/x^2 - 2`
⇒ `x^2 + 1/x^2 = 25 + 2 = 27` ....(2)
Let us consider the expansion of `( x + 1/x )^2` :
`( x + 1/x )^2 = x^2 + 1/x^2 + 2`
⇒ `( x + 1/x )^2 = 27 + 2` [from(2)]
⇒ `( x + 1/x )^2 = 29`
⇒ `( x + 1/x ) = +- sqrt29` ....(3)
We know that,
`x^2 - 1/x^2 = ( x + 1/x )( x - 1/x )`= `( +- sqrt29 )(5)` [From equation (1) and (3)]
`x^2 - 1/x^2 = +- 5sqrt29`
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 ) ( x + 10 )
Expand : ( x + 8 )( x - 10 )
Expand : ( X - 8 ) ( X + 10 )
Expand : `( x - 1/x + 5)^2`
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x - 1/x`
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2