Advertisements
Advertisements
प्रश्न
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
उत्तर
a2 + b2 + c2 = 50 and ab + bc + ca = 47
Since ( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca )
∴ ( a + b + c )2 = 50 + 2(47)
⇒ ( a + b + c )2 = 50 + 94 = 144
⇒ a + b +c = `sqrt144 = +- 12`
∴ a + b + c = `+-12`
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 ) ( x + 10 )
Expand : ( x + y - z )2
Expand : ( 5x - 3y - 2 )2
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc