Advertisements
Advertisements
प्रश्न
If a + `1/a` = m and a ≠ 0 ; find in terms of 'm'; the value of :
`a - 1/a`
उत्तर
Given that a + `1/a` = m
Now consider the expansion of `( a + 1/a )^2` :
`( a + 1/a )^2 = a^2 + 1/a^2 + 2`
⇒ m2 = a2 + `1/a^2` + 2
⇒ a2 + `1/a^2` = m2 - 2
Now consider the expansion of `( a - 1/a )^2` :
`( a - 1/a )^2 = a^2 + 1/a^2 - 2`
⇒ `( a - 1/a )^2 = m^2 - 2 - 2`
⇒ `( a - 1/a )^2 = m^2 - 4`
⇒ `( a - 1/a ) = +-sqrt(m^2 - 4)`
APPEARS IN
संबंधित प्रश्न
Expand : ( x - 2y + 2 )2
Expand : ( 5a - 3b + c )2
Expand : ( 5x - 3y - 2 )2
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If `[x^2 + 1]/x = 3 1/3 "and x > 1; Find If" x^3 - 1/x^3`
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`