Advertisements
Advertisements
प्रश्न
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
उत्तर
Given that x3 + 4y3 + 9z3 = 18xyz and x + 2y + 3z = 0
x + 2y = - 3z, 2y + 3z = -x and 3z + x = -2y
Now
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
= `[(-3z)^2]/(xy) + [(-x)^2]/(yz) + (-2y)^2/(zx)`
= `(9z^2)/(xy) + (x^2)/(yz) + (4y^2)/(zx)`
= `[ x^3 + 4y^3 + 9z^3 ]/[xyz]`
Given that x3 + 4y3 + 9z3 = 18xyz
∴ `[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
= `[18xyz]/[xyz]`
= 18
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 ) ( x + 10 )
Expand : ( x + 8 )( x - 10 )
Expand : ( x - 8 )( x - 10 )
Expand : `( 2x - 1/x )( 3x + 2/x )`
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
If a + `1/a` = m and a ≠ 0 ; find in terms of 'm'; the value of :
`a - 1/a`
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2