Advertisements
Advertisements
प्रश्न
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
उत्तर
Given that x3 + 4y3 + 9z3 = 18xyz and x + 2y + 3z = 0
x + 2y = - 3z, 2y + 3z = -x and 3z + x = -2y
Now
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
= `[(-3z)^2]/(xy) + [(-x)^2]/(yz) + (-2y)^2/(zx)`
= `(9z^2)/(xy) + (x^2)/(yz) + (4y^2)/(zx)`
= `[ x^3 + 4y^3 + 9z^3 ]/[xyz]`
Given that x3 + 4y3 + 9z3 = 18xyz
∴ `[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
= `[18xyz]/[xyz]`
= 18
APPEARS IN
संबंधित प्रश्न
Expand : ( X - 8 ) ( X + 10 )
Expand : ( x + y - z )2
Expand : ( x - 2y + 2 )2
Expand : ( 5a - 3b + c )2
Expand : ( 5x - 3y - 2 )2
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x3.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`