Advertisements
Advertisements
प्रश्न
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
उत्तर
x + y - z = 4 and x2 + y2 + z2 = 30
Since ( x + y - z)2 = x2 + y2 + z2 + 2( xy - yz - zx ), we have
(4)2 = 30 + 2( xy - yz - zx )
⇒ 16 = 30 + 2( xy - yz - zx )
⇒ 2( xy - yz - zx ) = -14
⇒ xy - yz - zx = `-14/2` = -7
∴ xy - yz - zx = -7
APPEARS IN
संबंधित प्रश्न
Expand : ( 5a - 3b + c )2
Expand : `( x - 1/x + 5)^2`
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
In the expansion of (2x2 - 8) (x - 4)2; find the value of constant term.
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2