Advertisements
Advertisements
प्रश्न
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
उत्तर
We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca ) .......(1)
Given that, a2 + b2 + c2 = 50 and a + b + c = 12.
We need to find ab + bc + ca :
Substitute the values of (a2 + b2 + c2 ) and ( a + b + c )
in the identity (1), we have
(12)2 = 50 + 2( ab + bc + ca )
⇒ 144 = 50 + 2( ab + bc + ca )
⇒ 94 = 2( ab + bc + ca)
⇒ ab + bc + ca = `94/2`
⇒ ab + bc + ca = 47
APPEARS IN
संबंधित प्रश्न
Expand : ( 5a - 3b + c )2
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 7(a - b)2 - 2(a + b)2
If 3x - `4/x` = 4; and x ≠ 0 find : 27x3 - `64/x^3`
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`