Advertisements
Advertisements
प्रश्न
If a2 + b2 + c2 = 35 and ab + bc + ca = 23; find a + b + c.
उत्तर
We know that
( a + b + c )2 = a2 + b2 + c2 + 2( ab + bc + ca ) ....(1)
Given that, a2 + b2 + c2 = 35 and ab + bc + ca = 23
We need to find a + b + c :
Substitute the values of ( a2 + b2 + c2 ) and ( ab + bc + ca )
in the identity (1), we have
( a + b + c )2 = 35 + 2(23)
⇒ ( a + b + c )2 = 81
⇒ a + b + c = `+-sqrt81`
⇒ a + b + c = `+-9`
APPEARS IN
संबंधित प्रश्न
Expand : ( x - 8 )( x - 10 )
Expand : ( x - 2y + 2 )2
Expand : ( 5x - 3y - 2 )2
If a + b + c = 12 and a2 + b2 + c2 = 50; find ab + bc + ca.
If a2 + b2 + c2 = 50 and ab + bc + ca = 47, find a + b + c.
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If a2 + b2 = 34 and ab = 12; find : 3(a + b)2 + 5(a - b)2
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`