Advertisements
Advertisements
प्रश्न
If a + `1/a` = m and a ≠ 0 ; find in terms of 'm'; the value of :
`a - 1/a`
उत्तर
Given that a + `1/a` = m
Now consider the expansion of `( a + 1/a )^2` :
`( a + 1/a )^2 = a^2 + 1/a^2 + 2`
⇒ m2 = a2 + `1/a^2` + 2
⇒ a2 + `1/a^2` = m2 - 2
Now consider the expansion of `( a - 1/a )^2` :
`( a - 1/a )^2 = a^2 + 1/a^2 - 2`
⇒ `( a - 1/a )^2 = m^2 - 2 - 2`
⇒ `( a - 1/a )^2 = m^2 - 4`
⇒ `( a - 1/a ) = +-sqrt(m^2 - 4)`
APPEARS IN
संबंधित प्रश्न
Expand : ( x + 8 )( x - 10 )
Expand : ( X - 8 ) ( X + 10 )
Expand : `( 3a + 2/b )( 2a - 3/b )`
Expand : ( x - 2y + 2 )2
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : Their product
Find the value of 'a': 4x2 + ax + 9 = (2x + 3)2
If 3a + 5b + 4c = 0, show that : 27a3 + 125b3 + 64c3 = 180 abc
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`