Advertisements
Advertisements
Question
If a + `1/a` = m and a ≠ 0; find in terms of 'm'; the value of `a^2 - 1/a^2`.
Solution
`a^2 - 1/a^2 = ( a + 1/a )(a - 1/a )` ...[Since a2 - b2 = (a + b)(a - b)]
= `m(+- sqrt(m^2 - 4) )`
= `+-msqrt(m^2 - 4)`
APPEARS IN
RELATED QUESTIONS
Expand : ( x - 8 )( x - 10 )
Expand : ( x + y - z )2
Expand : ( 5x - 3y - 2 )2
If a + b + c = p and ab + bc + ca = q ; find a2 + b2 + c2.
If x + 2y + 3z = 0 and x3 + 4y3 + 9z3 = 18xyz ; evaluate :
`[( x + 2y )^2]/(xy) + [(2y + 3z)^2]/(yz) + [(3z + x)^2]/(zx)`
If x > 0 and `x^2 + 1/[9x^2] = 25/36, "Find" x^3 + 1/[27x^3]`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
The difference between two positive numbers is 4 and the difference between their cubes is 316.
Find : The sum of their squares
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`
If x = `1/( x - 5 ) "and x ≠ 5. Find" : x^2 - 1/x^2`