Advertisements
Advertisements
प्रश्न
If x = `1/[ 5 - x ] "and x ≠ 5 find "x^3 + 1/x^3`
उत्तर
Given x = `1/[ 5 - x ]`;
By cross multiplication
⇒ x(5 - x) = 1
⇒ x2 - 5x = -1
⇒ x2 + 1 = 5x
⇒ `[ x^2 + 1]/x = 5`
⇒ `[ x + 1/x ] = 5` ...(1)
We know that
`( x^3 + 1/x^3 ) = ( x + 1/x )^3 - 3( x + 1/x )`
= `(5)^3 - 3(5)` ...[From equation (1)]
= `x^3 + 1/x^3`
= 125 - 15
= 110
APPEARS IN
संबंधित प्रश्न
Expand : ( X - 8 ) ( X + 10 )
Expand : ( x - 8 )( x - 10 )
If x+ y - z = 4 and x2 + y2 + z2 = 30, then find the value of xy - yz - zx.
In the expansion of (2x2 - 8) (x - 4)2; find the value of coefficient of x2
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If 2( x2 + 1 ) = 5x, find :
(i) `x - 1/x`
(ii) `x^3 - 1/x^3`
If x2 + `x^(1/2)`= 7 and x ≠ 0; find the value of :
7x3 + 8x - `7/x^3 - 8/x`
Find the value of 'a': 4x2 + ax + 9 = (2x - 3)2
Find the value of 'a': 9x2 + (7a - 5)x + 25 = (3x + 5)2
The sum of two numbers is 7 and the sum of their cubes is 133, find the sum of their square.